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Geometric motion segmentation
and model selection

By P. H. S. Torr†
Robotics Research Group, Department of Engineering Science, University of

Oxford, Jenkin Building, 17 Parks Road, Oxford OX1 3PJ, UK

Motion segmentation involves clustering features together that belong to indepen-
dently moving objects. The image features on each of these objects conform to one
of several putative motion models, but the number and type of motion is unknown
a priori. In order to cluster these features, the problems of model selection, robust
estimation and clustering must all be addressed simultaneously. Within this paper I
place the three problems into a common statistical framework; investigating the use
of information criteria and robust mixture models as a principled way for motion
segmentation of images. The final result is a general fully automatic algorithm for
clustering that works in the presence of noise and outliers.

Keywords: robust estimation; grouping; epipolar geometry;
matching; clustering; degeneracy detection

1. Introduction

Motion is a powerful cue for image and scene segmentation in the human visual
system. This is evidenced by the ease with which we see otherwise perfectly camou-
flaged creatures as soon as they move, and by the strong cohesion perceived when
even disparate parts of the image move in a way that could be interpreted in terms of
a rigid motion in the scene. Detection of independently moving objects is an essential
but often neglected precursor to problems in computer vision.

In robotic vision, motion segmentation turns out to be a most demanding problem
and has received considerable attention over the years, a review of which may be
found in Torr (1995). Many previous approaches to motion clustering have failed
because the motion models that they employ are too restrictive. For instance, if one
tries to group purely on similarity of image velocities, then any stream of images
from a static scene viewed by a camera undergoing cyclotorsion would be incorrectly
segmented. Schemes based on linear variation of the motion flow field will produce
false segmentations at depth discontinuities when the camera is translating (Jep-
son & Black 1993; Black & Anandan 1996). Segmentation under the assumption
of orthographic or weak perspective imaging conditions will fragment scenes with
strong perspective effects, even if no independent motion is present. Some methods
require a priori knowledge of camera calibration and motion, this may not always
be available. Thus the need for a more general framework is apparent.

The work in this paper stems from the desire to develop a general motion segmen-
tation and grouping algorithm. That is, given two or more views of a scene, we may
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determine any of the objects within the scene which change their relative disposi-
tions. The motion of both the camera and the object are presumed unknown, as is the
camera calibration. Consider figure 3a,b. A soldier is tracked by a rotating camera,
causing apparent motion to the left in the image. The soldier strides, giving the sem-
blance of an upward motion. Given this image pair as input, the ultimate goal would
be to identify that the soldier has moved independently of the background. This is a
prodigious undertaking and the computational theory and algorithms given in this
paper represent analysis of certain geometrical and statistical aspects of the problem.
Before developing an algorithm, several key design issues have to be answered: (i)
What data primitives should be used to represent the scene? (ii) What decision rule
should be used to group the primitives chosen? (iii) Having arrived at (i) and (ii),
what algorithm should be used to solve the problem? The first problem is one of data
reduction, the second of geometry and the third lies in the domain of computational
theory. The main contribution of this paper is in the latter two areas. Returning to
the first question, a major hindrance to the analysis of motion across an image is
the vast amount of data to be managed. Corner features (Harris & Stephens 1987)
are most amenable to geometric and statistical analysis, which is the flavour of this
work. Furthermore corner features indicate pixels where both components of image
motion might be recovered with reasonable accuracy; providing a strong constraint
on the motion model. Unfortunately they only give a sparse representation, and
so the models that are estimated from the corner features are used to flesh out the
description of the segmentation. With the primitives chosen, a decision rule has to be
developed to determine the segmentation. Many previous segmentation algorithms
have failed to exploit the geometric reality of the world, which is readily available
from image sequences. The approach espoused in this paper is to adopt a decision
rule that segments projected features in accordance with the constraints imposed by
the assumption that they are rigidly connected in the world. The method of segmen-
tation follows an information theoretic approach using the tools of mixture models
and information criteria. Thus within this paper we present a new paradigm that
automatically determines (i) how many motions there are in the scene (ii) what type
of motion model is appropriate for each motion (iii) the parameters and consistent
data for each motion model. Methods that have combined mixtures and model selec-
tion include Darrell et al . (1990) and Gu et al . (1996), the layered representation
of Ayer & Sawhney (1995), and in the related field of fitting surfaces to range data
(Mirza & Boyer 1992; Leonardis et al . 1990), but none of these methods supports
completely general models that may be of differing dimensions, as will be seen below.

The structure of the paper is as follows. In § 4 several common two-view relations
are introduced; being the putative motion models. Maximum likelihood estimation
of these models is explained in § 3, showing that the optimal segmentation may be
written in terms of a mixture model. The problem is that the use of just maximum
likelihood estimation will always lead to the most general model being selected as
most likely. Any of the putative motion models may be appropriate for a given set of
image correspondences undergoing rigid motion, the question is how to decide which
is the best. In § 4 the AIC criterion is introduced. It provides a method of scoring
the competing models fitted to the data. But it is not robust and cannot be used
to compare data lying on manifolds of different dimensions. Thus Kanatani’s (1996)
application of the AIC to compare manifolds of differing dimensions and robust
AICs (see Hampel et al . 1986) are introduced. In this paper these last two ideas are
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combined to produce a robust version of the AIC: GRIC that deals with data from
varieties of differing dimension. It is then shown how these can be used to establish
the correct posterior distributions for the data to establish a clustering. Finally in
§ 6 these ideas are all drawn together to give a motion segmentation algorithm, and
results are presented on real images. In § 7 some of the deficiencies of the algorithm
are discussed, which opens up some future possible avenues of research.

Notation. Noise free (true data) will be denoted by an underscore x, estimates x̂,
image points x, image matches m; the probability density function (PDF) of x given
y is p(x | y).

2. Putative motion models

Within this section some of the motion models used are described, a complete tax-
onomy is given in Torr et al . (1998). Suppose that the viewed features arise from a
three-dimensional (3D) object which has undergone a rotation and non-zero trans-
lation. After the motion, the set of homogeneous image points {xi}, i = 1, . . . , n, is
transformed to the set {x′i}, where xi = (xi, yi, ζ)T, and x′i = (x′i, y

′
i, ζ)T. The two

sets of features are related by x′Ti Fxi = 0, where F is the rank 2, 3×3 fundamental
matrix. The fundamental matrix encapsulates the epipolar geometry. It contains all
the information on camera motion and intrinsic parameters available from image
feature correspondences alone.

When there is degeneracy in the data such that we cannot obtain a unique solution
for F , it is desirable to use a simpler motion model. For small independently moving
objects, there may be an insufficient spread of features to enable a unique estimate of
the fundamental matrix. Within this paper for brevity I shall consider the detection
of just three other models, the affine camera model (Mundy & Zisserman 1992), with
linear fundamental matrix FA, and image projectivities and affinities as induced by
planar homographies: x′ = Bx. However, it will be seen that the proposed scoring
function is completely general; and has been implemented for a wider range of mod-
els. The properties of the models are investigated in greater detail in § 4, and the
equations of the constraints are summarized in table 3.

3. Maximum likelihood estimation

In the following we make the assumption that the noise in the two images is Gaus-
sian on each image coordinate with zero mean and uniform standard deviation σ
(extension to the more general case is not difficult and is described by Kanatani
(1996)). Thus given a true correspondence m the probability density function of the
noise-perturbed data is

p(m | R,m) =
∏
i

(
1√
2πσ

)4

e−((xi−xi)2+(y
i
−yi)2+(x′i−x′i)2+(y′

i
−y′i)2)/(2σ2), (3.1)

whereR is the appropriate two-view relation, e.g. fundamental matrix or projectivity.
The negative log likelihood of all the correspondences mi, i = 1, . . . , n, where n is
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the number of correspondences, is

L =
∑
i

log(Pr(mi | R)) (3.2)

=
∑
i

((xi − xi)2 + (y
i
− yi)2 + (x′i − x′i)2 + (y′

i
− y′i)2), (3.3)

discounting the constant term.
Given two views with a known relation; for each correspondence m the task

becomes that of finding the maximum likelihood estimate m̂ of the true match m,
such that m̂ satisfies the relation and minimizes the negative log likelihood

l2i =
∑
j

((x̂i − xi)2 + (ŷi − yi)2 + (x̂′i − x′i)2 + (ŷ′i − y′i)2). (3.4)

If the type of relation R is known then, observing the data, we can estimate the
parameters of R to minimize this log likelihood. This inference is called ‘maximum
likelihood estimation’ (Fisher 1936). Thus L =

∑
i l

2
i provides the error function for

the point matches, and R for which L is a minimum is the maximum likelihood esti-
mate of the relation (fundamental matrix, or projectivity). The optimally estimated
correspondence m̂ and its error l may be obtained as the solution of a high order
polynomial equation. A computationally efficient first order approximation to these
is given in Torr & Zisserman (1997).

If the type of relation R is unknown then we cannot use maximum likelihood
estimation to decide the form of R, as the most general model will always be most
likely, i.e. have lowest L. Fisher was aware of the limitations of maximum likelihood
estimation and admits the possibility of a wider form of inductive argument that
would determine the functional form of the data (Fisher 1936, p. 250); but then goes
on to state, ‘At present it is only important to make clear that no such theory has
been established’. Some suggestion for this wider form of inductive argument are
given in § 4; before this the maximum likelihood solution for multiple motion case is
considered using a mixture model.

(a) Optimal clustering

The initial set of matches Z is obtained by cross correlation as described in Beard-
sley et al . (1996). The problem is to optimally group them into sets consistent with
the different motion models. This involves finding the most probable underlying
interpretation φ, being a classification into several motion models together with the
parameters of those models. The most likely partition is obtained by maximizing
the probability of the interpretation given the data: maxφ Pr[φ | Z], which may be
rewritten using Bayes theorem:

Pr[φ | Z] =
Pr[Z | φ] Pr[φ]

Pr[Z]
. (3.5)

Thus clustering is defined as a Bayesian decision process that minimizes the Bayes
risk incurred in choosing a partition of Z. As Pr[Z] does not depend on φ it may be
dropped from the exposition, and the problem becomes that of finding

max
φ

Pr[Z | φ] Pr[φ].

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Geometric motion segmentation 1325

A partition φ is a set of s clusters κj ⊂ Z. Each cluster is defined as a motion model
Rj together with a set of matches κj such that each match arises from one cluster,
κ1 ∪ κ2 · · · ∪ κs = Z, and only one cluster, κi ∩ κj = 0. One cluster κs is designated
as the cluster containing all mismatches and outliers; matches that do not belong to
any of the other clusters are assigned to this. Note that the number of clusters may
vary from interpretation to interpretation.

Each match m is modelled by a prior mixture model, such that m belongs to
one of the s − 1 clusters with probabilities π1, . . . πs−1 such that

∑j=s−1
j=1 πj = 1

and πj > 0. Adopting the notation of McLachlan & Basford (1988), the PDF of
any match m given interpretation φ = ((π1 . . . πs−1); (R1 . . .Rs−1))T is given by the
finite mixture form,

p(m | φ) =
j=s∑
j=1

πjpj(m | Rj), (3.6)

where pj(m | Rj) is the PDF of the match given Rj .
Once the clusters have been estimated (a method of initialization is given in § 6),

estimates of the posterior probabilities of population membership are formed for each
match mi based on the estimated φ̂. The posterior probability τij(m | φ) is given by

τij(m | φ) = Pr[mi ∈ Rj |m;φ] = πjpj(mi | Rj)
/ k=s−1∑

k=1

πkpk(mi | Rk). (3.7)

A partitioning of m1 . . .mn into s non-overlapping clusters is effected by assigning
eachmj to the population to which it has the highest estimated posterior probability
τij(m | Rj) of belonging. That is m is assigned to cluster Rt if

τit(m | φ̂) > τij(m | φ̂) (j = 1 . . . s− 1; j 6= t). (3.8)

To make this procedure robust a threshold must be made on pj(mi | Rj) in order
to eliminate outliers. If − log(pj(mi | Rj)) > lo for j = 1 . . . s− 1 then the match is
redesignated an outlier. This threshold is arrived at in the next section.

To calculate the complete log likelihood LC = log(Pr[Z | φ]) account must be taken
of the fact that each match can only belong to one cluster. For this purpose, for each
match an s-dimensional vector of unknown indicator variables ci = (c1i . . . csi) is
introduced, where

cij =

{
1 mi ∈ κj ,
0 mi 6∈ κj . (3.9)

Then following standard texts (McLachlan & Basford 1988), the complete log likeli-
hood is given by

LC =
i=n∑
i=1

j=s∑
j=1

cij(log πj + log(p(mi | Rj))). (3.10)

This may be maximized by treating the cij as missing data from the mixture model
and using the EM algorithm (Dempster et al . 1977), or some suitable gradient descent
algorithm.

Thus far there has been no discussion of either how to determine the type of motion
model appropriate for each cluster, or the number of such clusters; these topics are
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Table 1. Mean SSE

(Mean SSE for 100 matches over 100 trials. Variance of noise on the coordinates: σ2 = 1, together
with GIC values in parentheses.)

point motion︷ ︸︸ ︷
estimated general orthographic rotation

fundamental 114 (728) 92 (706) 92 (706)
affine 399 (1007) 96 (694) 143 (751)
projectivity 493 (909) 452 (868) 195 (611)

related to the final term to be considered in Bayes formula: the prior Pr[φ]. In order
to go about estimating this, the province of model selection must be entered, which
is considered in the next section.

4. Model selection

Robotic vision has its basis in geometric modelling of the world, and many vision
algorithms attempt to estimate these geometric models from perceived data. Usually
only one model is fitted to the data. But what if the data might have arisen from
one of several possible models? In this case the fitting procedure needs to fit all
the potential models and select which of these fits the data best. This is the task
of robust model selection which, in spite of the many recent developments in the
application of robust fitting methods within the field of computer vision, has been,
by comparison, quite neglected.

One approach might be to fit a model, and then test the hypothesis that it is
acceptable. This approach was followed in Torr (1995) where a system of hypothesis
testing was developed, testing the hypothesis that the data were degenerate against
the hypothesis that the data were non-degenerate. In the Neyman–Pearson theory
of statistical hypothesis testing only the probabilities of rejecting and accepting the
correct and incorrect hypotheses, respectively, are considered to define the cost of a
decision. The problem with this approach is that it is difficult to adapt to a situation
where several models might be appropriate, as the test procedure for a multiple-
decision problem involves a difficult choice of a number of dependent significance
levels. What is needed is a scoring mechanism to rate each model. As seen, maximum
likelihood methods will always lead to the most general model being selected; hence
the need for a more general method of inductive inference that takes into account the
complexity of the model. This has lead to the development of various information
criteria (see the special issue of Psychometrika on information criteria (Takane &
Bozdogan 1987)). Foremost amongst these is ‘an information criterion’ (AIC) (Akaike
1974). It will be seen that AIC fails in the presence of outliers, and so a new cost
function, GRIC is devised. I examine the GRIC criterion in a real application to a
basic problem in computer vision, developing a statistically based GRIC estimator
to determine the relationship between point matches over two views that robustly
selects the motion model and detects the presence of outliers.
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(a) AIC for model selection

Akaike’s information criterion is a useful statistic for model identification and
evaluation. Akaike (1974) was perhaps the first to lay the foundations of information
theoretic model evaluation. He developed a model selection procedure—for use in
auto-regressive modelling of time-series—that chose the model with minimum esti-
mated expected residual, with respect to the model fitted, for future observations as
the best fit. The procedure selects the model that minimizes expected error of new
observations with the same distribution as the ones used for fitting.† It has the form

AIC = (−2) logL+ 2k, (4.1)

where k is the number of parameters in the chosen model, and L is the log likelihood.
With a Gaussian error model this is equivalent to the sum of squares of residuals:

AIC =
∑ e2

i

σ2 + 2k,

plus an additive constant which is discounted from here on. It can be seen that AIC
has two terms, the first corresponding to the badness of fit, the second a penalty on
the complexity of the model; this can be thought of as analogous to an estimate of
the log likelihood of the prior log Pr[φ]. When there are several competing models,
the parameters within the models are estimated by maximum likelihood and the AIC
scores compared to find the model with the minimum value of AIC. This procedure is
called the minimum AIC procedure, and the model with the minimum AIC is called
the minimum AIC estimate (MAICE), which is chosen as the best model. Therefore
the best model is the one with highest information content but least complexity.
An advantage of the AIC is its simplicity as it does not require reference to look
up tables, it is very easy to calculate AIC once the maximum likelihood estimate of
the model parameters is made. Furthermore, there is no problem of specifying an
arbitrary significance level at which models should be acceptable, and comparison
between two models need not be nested or ordered.

It has been pointed out that there are some problems with AIC. One is that
the AIC does not produce an asymptotically consistent (i.e. as the number of data
tends to infinity) estimate of the order of the model (Schwarz 1978) as there is
no account made in (4.1) for the number of observations. There have been several
AIC inspired paradigms all of which provide some sort of scoring mechanism for
the models, the model with least score being accepted. Table 2 summarizes some
of the better known criteria. The typical form of these scoring criteria is a func-
tion of the badness of fit, the number of parameters used, the amount of data, and
the information matrix. Schwarz (1978) and Kashyap (1982) work from a Bayesian
point of viewpoint, expanding Pr(model | data), the posterior probability of a model
given the data, trying to devise prior probabilities of the models based on their
complexity. It is interesting to observe that Rissanen (1978) developed a criterion
with a similar form to Akaike’s from a totally different standpoint. He derived the
minimum-bit representation of the data, termed shortest description length (SSD)
and minimum description length (MDL) (an approach suggested by the inductive
theory of Solomonoff (1964)). Bozdogan (1987) attempts to derive measures that are
asymptotically consistent, and experimentally verifies this on 100 trials. Wallace &

† He later demonstrated that AIC was an estimate of the expected entropy (Kullback–Leibler infor-
mation), showing that the model with the minimum AIC score also minimized the expected entropy.
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1328 P. H. S. Torr

Table 2. Model selection scoring functions

(Showing some different model evaluation criteria suggested in the literature. logL is the log
likelihood of the model, k the number of parameters, n the number of data, φk the estimate set
of parameters; pr is the prior probability, Σ is the covariance and J the information matrix of
the estimated parameters.)

author criterion

Mallows’s Cp −2 logL− n+ 2k
Akaike’s AIC −2 logL+ 2k
Schwarz −2 logL+ 2k logn
Schwarz KC −2 logL− log pr + log |Σ|+ k logn
Rissanen’s SSD −2 logL+ k log(n+ 2)/24 + 2 log(k + 1)
Rissanen’s MDL −2 logL+ 1

2k logn
Bozdogan’s CAIC −2 logL+ k(log(n) + 1)
Bozdogan’s CAICF −2 logL+ k(log(n) + 2) + log |J |
Wallace’s MML2 −2 logL− log pr + 1

2 (log |J + k)|

Freeman (1987) develop a very similar criterion to Bozdogan’s CAICF following a
minimum message length (MML) approach. It is somewhat eerie to observe that AIC,
MDL and MML derivations all produce similar criterion for model selection, even
though they start from very different premises; Leclerc (1989) points out that this
is because, from a Bayesian perspective, model selection comes down to assigning a
prior probability to each of the putative underlying interpretations φ in (3.5). In Torr
(1997) the model scoring criteria are compared for two-view motion model selection,
and it is found that Akaike’s original AIC performs reasonably, but must be adjusted
to cope for differing dimensions of the models. This adjustment is detailed below.

In the original derivation of the AIC (Akaike 1974) it is apparent that models
can only be compared if they are ‘nested’, meaning that given the most general
model having parameters (a0, a1, a2, . . . , ap−1), the less general models are formed by
setting some of these coefficients to zero, e.g. models may be formed with parameters
(a0, a1), or (a0, a1, a2), etc. This is also an assumption common to the clones of AIC
given in table 2. This leads to a distinct problem. Consider two models that are non-
nested for two-dimensional data: a point and a line. Both have k = 2 parameters
but a line will always have a lower SSE (thus higher likelihood) than a point. This
can be seen in figure 1. The point cannot be described by setting any of the lines
coefficients to zero and hence the AIC criterion cannot be used. The problem is that
the two models are of different dimensions, the point is a 0-dimensional model and
the line is 1 dimensional, in a 2-dimensional space.

How does this relate to image constraints? Each pair of corresponding points x,
x′ defines a single point m in a measurement space R4, formed by considering the
coordinates in each image. The image correspondences induced by a rigid motion
have an associated algebraic variety V in R4. The fundamental matrix, and affine
fundamental matrix for two images are dimension 3 varieties, a projectivity between
two images is a dimension 2 variety (Torr et al . 1998). The fundamental matrix has
seven degrees of freedom, the projectivity has eight, and yet the fundamental matrix
is more general. The affine fundamental matrix has four degrees of freedom, affinity
6. These properties are summarized in table 3. The AIC as it stands provides no
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Table 3. Motion models used

(A description of the reduced models that are fitted to degenerate sets of correspondences. c is
the minimum number of correspondences needed in a sample to estimate the constraint. k is the
number of parameters in the model; d is the dimension of the constraint.)

model c k d constraint parameters

fundamental matrix 7 7 3 x′TFx = 0 F =

 f1 f2 f3

f4 f5 f6

f7 f8 f9


affine FA 4 4 3 x′TFAx = 0 FA =

 0 0 g1

0 0 g2

g3 g4 g5


projectivity 4 8 2 x′ =Bx B =

 b1 b2 b3
b4 b5 b6
b7 b8 b9


affinity 3 6 2 x′ =Ax A =

 a1 a2 a3

a4 a5 a6

0 0 a7



mechanism for coping with models of different dimension, which is essential if we are
to discern the difference between a dimension 2 and 3 variety. Table 1 shows that
the AIC will always lead to the higher dimension varieties being selected regardless
of the underlying ground truth. Within the next section Kanatani’s (1996) approach
to this problem will be described.

(b) Geometric information criterion

The AIC is developed from the idea that the best model is that which minimizes the
expected SSE for future data. Consider the case of fitting a manifold of dimension
d to r-dimensional points, in this case the codimension is r − d. Kanatani (1996)
generalizes AIC to

GIC = −2 logL+ 2(dn+ k), (4.2)

which he claims is an unbiased estimator of the expected SSE. Kanatani’s deriva-
tion of the GIC is rather drawn out, and the interested reader is referred to his
book (Kanatani 1996). In fact Akaike (1987) gave a similar form for the GIC in
the case of factor analysis when fitting models of differing dimensions. Rather than
present it here, an intuitive interpretation is presented in the next section; in the
two-dimensional case r = 2, fitting a line model d = 1 and point model d = 0.

(c) Intuitive interpretation

Consider equation (4.2), the first term is the usual sum of squares of residuals,
divided by their variances, representing the goodness of fit. The next two terms
represent the parsimony of the model. The second being a penalty term for the
dimensionality of the model, the greater the dimension for the model the greater the
penalty. The last term is the usual AIC criterion of adding the number of parameters
of the model, to greater penalize models with more parameters.
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Noisy point

d l

dp

kd

Optimally Estimated Point

Optimally Estimated Line

Figure 1. Showing the relationship between the noisy point, the optimally estimated line and
the optimally estimated point in the Kanatani scheme.

This is now illustrated by a simple example, consider the two-dimensional example
shown in figure 1. Suppose points are generated from a fixed location with added
mean zero, unit standard deviation, Gaussian noise in both the x and y coordinates.
If a point and a line are fitted separately by minimizing the sum of squared Euclidean
distances, the optimally fitted point will lie on the optimally fitted line. Let the sum
of squared distances of the points to the line model be dl and the sum of squared
distances of the points to the point model be dp, then dp = dl + dk, where dk is the
‘parallel’ sum of squared distances as shown for one point in figure 1. It can be seen
that unless the data all lie exactly on a point then dl is always less than dp. The
GIC for the line model compensates for this bias by the penalty term, which is twice
the expectation of the ‘parallel’ sum of squares (dk). If the model estimated is a line
then the GIC has the form

GIC(line) = dl + 2(n+ 2), (4.3)
as the model has dimension 1, codimension 1 and two degrees of freedom in the
parameters. If the number of data is large, the degree of freedom of the model (i.e.
the number of the parameters) has little effect because it is a simple constant. What
matters is twice the dimension of the model, which is multiplied by the number of
data. The dimension equals the ‘internal’ degree of freedom of the data, which in
turn equals the expectation of the ‘parallel’ (or in a direction on the manifold) sum
of squares per datum. Returning to the example, the GIC for a point is

GIC(point) = dl + dk + 4, (4.4)
thus a point is favoured if dk 6 2n. Hence the algorithm is equivalent to a test of
spread along the line.

Kanatani’s method works well for two-view geometric constraints as well, consider
the average SSE given in table 1 for 100 data points. These can be turned into GIC
by the addition of 614, 608 and 416 (2(nd + k)) for F , FA and H respectively. It
can be seen that on average the lowest GIC equates to the correct model, although
it behaves less well for distinguishing F from FA, than F from H. Generally the
GIC tends to underestimate the dimension of the data and overestimate the number
of motion model parameters; suggesting that a more general form

GIC = −2 logL+ λ1dn+ λ2k (4.5)
might be appropriate with 1 6 λ1 6 2 and λ2 > 2; experimentation with the form
of GIC is beyond the scope of this paper and will be the subject of future work.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Geometric motion segmentation 1331

Generally when n is small λ1 should be set to 2, when n is large λ1 should be set
to 1, but for reasonable data experiments reveal that the solution obtained is fairly
stable over a range of values of n, λ1 and λ2. The major drawback of Kanatani’s
work is that it is non-robust, which is dealt with in the next section.

(d) Robust AIC

Thus far model selection in the case of known error distribution has been consid-
ered. Yet it must be realized that there is a big gap between the theoretical results
and the practical procedures of identification. This is because the data only approxi-
mately conform to postulated theoretical probability distributions; furthermore they
may contain outliers which correspond to data belonging to a totally different pop-
ulation. Thus the model selection procedure needs to be robust, which means that it
will still work even if the theoretical assumptions about the data are violated (such
as there being outliers in the data). To illustrate the effects of outliers in the pres-
ence of degeneracy, a simple example is furnished. Figure 2 shows four cases of line
fitting to two-dimensional data sets. Figure 2a shows a set which we might consider
non-degenerate, and for which a line model is appropriate. Figure 2b demonstrates
degenerate data, where there are an infinite number of lines that fit the data equally
well. A noise model is essential if this type of degeneracy is to be detected; in the
absence of a noise model an arbitrary rescaling of a given axis can make the data look
linear. Similarly, in figure 2a if the noise were very high relative to the dispersion of
the points then this might indeed be a degenerate set. The need for methods that
can flag degeneracy in the presence of outliers is demonstrated by figure 2c, where
even one outlier can effectively mask the degeneracy. From this example it is clear
that the detection of outliers and model selection are inextricably linked.

Ronchetti (see Hampel et al . 1986) notes that the derivation of the AIC is inde-
pendent of the distribution assumed for it, and that it can be robustified in much
the same way that Huber (1981) extended maximum likelihood estimation to M-
estimation. Ronchetti proposed the robust AIC:

∑
i ρ(e2

i ) + αk. The decision then
becomes one of choosing an appropriate robust error function ρ(e2

i ) and deriving the
value of α that correctly weights the two terms of AICR. Correctly determining ρ(e2

i )
entails some knowledge of the outlier distribution; here it is assumed, without a pri-
ori knowledge, that the outlier distribution is uniform, with negative log likelihood
lo = λ3 for error dimension one. For higher-dimensional errors lo = (r − d)λ3 where
r − d is the codimension. The minimum of these two log likelihoods defines ρ(e2

i ),

ρ(e2) =
{
e2/σ2 e2/σ2 < λ3(r − d)
λ3(r − d) e2/σ2 > λ3(r − d)

}
= min(e2/σ2, λ3(r − d)), (4.6)

where σ is the standard deviation of the error on each coordinate. The form of ρ() is
derived to behave like a Gaussian for data with low residuals and a uniform distri-
bution for data with high residuals. What value should λ3 take? Consider an outlier
in dimension d space; it is assumed that absolutely nothing about the distribution
of the outlier (not even that it of the same probability distribution as the other out-
liers); hence it is described by d parameters, one for each coordinate, i.e. x, y, x′, y′.
Thus here I choose λ3 = 2, but experiments have shown that the solution remains
unchanged for a range of λ3; in the case that the codimension is 1, this choice incor-
rectly rejects inliers 10% of the time. In the simple case of fitting a line versus a
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Y

X

Y

X

Y

X

(a) (b)

(c) (d)

Figure 2. Line fitting to two-dimensional data sets. (a) A non-degenerate data set, with no
ambiguity in determining the best line fit. (b) A degenerate data set. Many solutions will have a
similar error. (c) A single outlier renders a degenerate data set apparently non-degenerate. (d)
The case when the data should be modelled by a mixture model.

point, the cost function for a line is −2 logL + 2(il + k) + 2(2ol), where il is the
number of inliers to a line and ol the number of outliers, and k = 2 for a point
−2 logL+ 2(k) + 2(2op), where op is the number of outliers to a point and k = 2.

The form of the function given in (4.6) has several advantages. Firstly, it provides
a clear dichotomy between inliers and outliers. Secondly, outliers to a given model
are given a fixed cost, reflecting that they probably arise from a diffuse or uniform
distribution. The fixed penalty is also in the same spirit as robust MDL approaches,
where outliers are assigned a fixed cost. Furthermore, if the outliers follow a large
uniform distribution, then they will only be incorrectly flagged as inliers a vanishingly
small percentage of the time (false positives). Having made a choice for ρ(e2

i ), the
question of what to choose for α arises. When the error is Gaussian, Akaike makes a
strong case that α = 2. Using the robust error function I can also claim that α ≈ 2,
as I am advocating what is in effect a trimmed Gaussian distribution.

The first new research in this paper comes from the simple step of drawing
together the geometric AIC developed by Akaike and Kanatani, with the robust
AIC expounded above, to produce an information criterion that is both robust and
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capable of dealing with models of different dimensionalities, termed the geometric
robust information criterion: GRIC

GRIC =
∑

ρ(e2
i ) + λ1dn+ λ2k. (4.7)

This has terms for the error, dimension and number of parameters in the model. In
order to evaluate this sum an estimate of the standard deviation of the error σ must
be made. This is done a priori from the properties of the corner detector. The second
new piece of research in this paper comes from adjusting the mixture model of § 3
to cope consistently with data arising from varieties of different dimensions; this is
done by developing the posterior probabilities for each datum given the model.

5. Establishing posterior distributions

When calculating the posterior distributions τij(m | φ) given in (3.7), simply using
the likelihoods of pk(mi | Rk) as given in (3.1) produces a solution which is biased
in that data will be more likely to belong to a higher-dimensional than a lower-
dimensional model as shown in § 4. This is because, for the dimension 3 varieties,
there is only one degree of freedom in the error (3.4) while there are three degrees
of freedom in the choice of m̂. Whereas for dimension two varieties there are two
degrees of freedom as there are only two degrees of freedom in the choice of m̂.

Bozdogan (1987) suggests that the AIC is an unbiased estimator of minus twice the
mean expected log likelihood, or equivalently −1

2AIC is asymptotically an unbiased
estimator of the mean expected log likelihood. This result suggests that asymptoti-
cally a reasonable definition of the likelihood of a model is

pAIC(φ) = exp(−1
2AIC). (5.1)

This suggests that to cope with data arising from varieties of differing dimensions
(3.1) should be altered to

p(m | Rj ; AIC)

=
∏
i

(
1√
2πσ

)4

e−((xi−xi)2+(y
i
−yi)2+(x′i−x′i)2+(y′

i
−y′i)2)/(2σ2)+λ1dj , (5.2)

where dj is the dimension of Rj . This is a key new idea: to use the expected log
likelihood furnished by the AIC to allow the use of mixture models for data arising
from varieties of differing dimensions. Without this compensation factor, I have found
that matches are assigned to clusters consistent with fundamental matrices at the
expense of those consistent with homographies. The posterior probabilities τij(m |
φ; AIC) are now given by

Pr[mi ∈ Rj |m;φ; AIC] = πjpj(mi | Rj ; AIC)
/ k=s−1∑

k=1

πkpk(mi | Rk; AIC). (5.3)

6. Motion segmentation

The final cost function to be maximized is

LC(AIC) =
i=n∑
i=1

(j=s∑
j=1

cij(log πj + log(p(mi | Rj)) + λ1dj)
)

+ λ3ro+ λ2kj , (6.1)
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Table 4. Clustering algorithm

1. Initialize the number of clusters extracted to j = 0.

2. RANSAC followed by a robust nonlinear estimator is used to estimate each model F , FA,
H, A, from the data Z as described in Torr & Murray (1994, 1997). Information about
spatial proximity is used to exploit the spatial cohesion of moving objects, by sampling
correspondence sets that are close to each other in the image.

3. Calculate the GRIC score for each model.

4. If the number of inliers for the model with minimum GRIC is lower than a threshold
(for details of this threshold see Torr & Murray (1994)), declare all unassigned matches
outliers goto step (8).

5. Increment j by one.

6. The model with minimal GRIC is stored as a motion model Rj , together with the its set
of inliers κj .

7. Remove the matches κj from Z and go to step 1.

8. Using the established clusters as input apply the EM algorithm to maximize (6.1).

9. Clusters are pruned by removing one cluster at a time and recomputing (6.1) to see
whether the cost function is reduced, if it is the cluster is discarded and the matches
reassigned to the other clusters; as described in § 3.

10. Reassign matches m to their optimal estimates m̂.

11. Densely segment.

where o is the number of outliers, kj is the number of parameters and dj is the
dimension of the kth model; e.g. 7 for F , 8 for H. For the experiments presented in
the next section λ1 = λ2 = λ3 = 2. It would be too computationally expensive to
search every possible φ in order to minimize (6.1), hence a random sampling type
algorithm is used, in which solutions are grown from minimal subsets of points within
the image. This procedure is described in more detail in the next section.

The segmentation algorithm extracts models using RANSAC (Fischler & Bolles
1981) and is described in table 4. Once the clusters are identified, a dense segmenta-
tion is made; for each pixel in image 1 its location in image 2 is predicted using each
motion model, and the squared difference in image intensity calculated. The pixel is
assigned to the cluster which minimizes this difference; matches may be reassigned
at this juncture. For F and FA pixel transfer is not defined. In order to accomplish
the transfer, the nearest three optimally estimated matches m̂ consistent with the
cluster to the pixel are found, and using these three matches and the estimate of F
or FA for the cluster a homography is computed to transfer that pixel from image
1 to 2. Finally, in order to improve the segmentation, morphological operations are
applied (Rosin 1998).

(a) Results of the segmentation algorithm

(i) Soldier example

Figures 3a, b show two images, the first and twelfth, from a sequence of a soldier
striding through the jungle. Figure 3b shows the disparity vectors for the initial point
correspondences. The camera tracks the figure, the background apparently moves to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Test data: truck and soldier.

the left while the figure moves down. The background is relatively distant and the
motion vectors are all of roughly equal length. The foreground figure apparently
moves down towards the foot of the image. The clusters generated by the RANSAC
extraction algorithm are shown in figures 3d, e and the outliers in 3f . The GRIC
scores calculated at step (iii) for the models are given in table 5, the background
model is given as H, the foreground (soldier) is A; and the dense segmentation
gained is shown in figure 3f .

(ii) Lorry

Figures 3g, h are two images from a sequence of a lorry translating to the right, as
the camera zooms away from it; figures 3g shows initial disparity vectors. By chance,
the epipolar geometry for the lorry is locally similar to that of the background within
the region of the image subtended by the lorry, and attempts to segment based solely
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Table 5. Clustering results

(GRIC values for the images. The model with lowest GRIC is underlined.)

motion of points︷ ︸︸ ︷
estimated n general orthographic homography affinity inliers

cluster 2 truck 319 1089 1079 1110 1089 91
cluster 1 truck 319 2125 2118 2001 1997 166
cluster 2 soldier 565 1336 1315 1228 1225 66
cluster 1 soldier 565 3853 3879 3299 3367 388

on F fail. The motion segmentation algorithm identifies two clusters, the larger
consistent with an affinity A corresponding to the background, the smaller to an
affine camera corresponding to the lorry. The GRIC scores calculated at step (iii) for
the models are given in table 5. Using these models more accurately represents the
motion, and the dense segmentation gained, shown in figure 3c, is better than that
gained by just using fundamental matrices.

Generally we found that the method provided the dimension of the model varieties
quite stably, but that their degree was more difficult to ascertain. Thus the decision
between F and H was more reliable than that between F and FA or H and A;
suggesting there needs to be further work to improve the AIC criterion.

7. Summary and conclusions

There have been three contributions contained within this paper. The first is to
provide a new method of motion segmentation using the constraints enforced by
rigid motion. This method uses mixture models in an optimal statistical framework
to estimate the number and type of motion models as well as their parameters. To
achieve this two things needed to be done. The first was to make the AIC robust
to outliers. A new general method, GRIC, has been presented for robust model
selection, and its application to two-view motion model fitting demonstrated. The
method is highly robust and simultaneously flushes outliers and selects the type of
model that best fits the data. The second was to use the AIC to estimate the expected
likelihoods for data arising from models of differing dimensions; solving the problem
of over-fitting of the dimension if just the unadjusted likelihood were used.

The convergence of the EM algorithm is notoriously slow (Redner & Walker 1984)
and it may be better to use some sort of conventional numerical optimization tech-
nique. Methods such as gradient descent have the added advantage of automatically
supplying the covariance matrix as part of the algorithm. Comparison of EM and
other algorithms for optimising a motion segmentation is an interesting vein of future
work.

The dense segmentation method is still in the initial stage of development. It
might prove desirable to adjust the way that the motion models are determined to
incorporate information from all pixels, not just highly textured areas. This is the
approach followed by Ayer & Sawhney (1995), although they use only projectivities
as motion models; and it is not clear how much extra advantage to the estimation
of the motion models is gained by including non-textured regions of pixels in the
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minimization. Information from edges could be used to improve the detected motion
discontinuities and this would be an interesting avenue for future research.

I gratefully acknowledge W. Triggs, Dr P. McLauchlan, Dr K. Kanatani, A. Fitzgibbon, Dr
D. Murray and Dr Andrew Zisserman for comments. ACTS Project VANGUARD provided
financial support.
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Discussion

O. Faugeras (INRIA, France). This is very nice, but I would prefer to see F
smoothly varying rather than having just several discrete possibilities like projective
and affine.

P. H. S. Torr. This can be thought of as model averaging, rather than fitting a line
or a conic to some data, we should allow for smooth combination of the two models:
the line and the conic. At the moment I am experimenting with Bayes factors as a
method to perform this model averaging.

T. Kanade (Robotics Institute, Carnegie Mellon University, Pittsburgh, USA). How
does Dr Torr’s scheme compare with Saranoff’s layered method?

P. H. S. Torr. The work of Kumar, Anandan, Ayer and Sawhney does not use
general three-dimensional models for segmentation, rather the image is segmented
into two-dimensional ‘layers’. I am interested in getting a general purpose motion
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segmenter which works with outliers, and for 3D as well as 2D motions (rather than
just the motion induced by planes), so this method is more general than theirs,
although I liked their work and thought it was very interesting.

N. Hollinghurst (Olivetti and Oracle Research Laboratory, Cambridge, UK ). Does
Dr Torr use correlations over general patches of the images and then choose a model
using them?

P. H. S. Torr. To initialize the various motion models I used a point-based process.
Once we have an estimate of the motion model we can use a homography, for instance
(for example, the background in the Schwarzenegger scene (figure 3)) to transfer each
pixel in order to compare with the pixel in the next image. This cannot be done with
a fundamental matrix, that’s why I use a Delaunay triangulation assuming local
planar patches. This is of course, only a first stab at the problem.

J. Lasenby (Department of Engineering, University of Cambridge, UK ). The sig-
nal/image processing community devotes much research effort to motion segmenta-
tion; in particular there have been recent algorithms proposed for layered segmen-
tation, which seems to be doing much the same as you are doing. In those models
the number of layers would be chosen via some criterion like MDL. Has Dr Torr
compared his method with such schemes?

P. H. S. Torr. These methods are not robust, because, as I mentioned before
they do not deal with 3D motion. As many of these methods use an instantaneous
motion model (as opposed to discrete), they will only be useful for very closely spaced
images. The system I have described here is completely automatic from the matching
onwards.

M. Sabin (Numerical Geometry Ltd, Cambridge, UK ). There is a purely geometric
technique which came out of the computational geometry world called the α-shapes
method which might be useful for this problem. It is essentially a pruning of the
Delaunay triangulation in 4-space, estimating the dimension (locally) of the manifold
given by a cloud of points.

P. H. S. Torr. These methods are essentially similar to the robust convex hull tech-
niques. I have some experience which such techniques and have found that some care
is needed in using them. For example, during fitting, these methods will designate
good data as outlying.

A. Fitzgibbon (Department of Engineering, University of Oxford, UK ). First, a
comment on the previous question. I think Dr Torr will find that the α-shapes method
will not be able to deal with varying dimensions of the manifold. What you get when
you apply it to a 4D point set is a 3D submanifold, but not a 2D or 1D one, as it is
simply a subset of the Delaunay simplicization.

Secondly, I would say that the important tuning factor in the AIC method is the
noise variance σ. Do you estimate the noise variance from the image data, and do
you find that performance is sensitive to the estimate of σ?

P. H. S. Torr. Estimating the noise correctly is a very hard thing to do when there
is an unknown number of independently moving objects and outliers. One can use
the median of the errors to robustly estimate the noise variance, but if half the data
are not inliers to a model, the median may be arbitrary. Therefore, a calibration
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phase is required in order to get prior estimates of the thresholds involved. There
are several approaches to this: first we could adopt a Kanatani-style approach and
work out what the thresholds should be from the properties of the corner matches
leading to some threshold t such that we accept only points with error below t pixels.
Overall, because of the big difference between the inlier and outlier distributions we
have some good flexibility in the choice of threshold, and the methods described here
will be robust to misspecification of t by several pixels.
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